When displaying output from Azure AI services (like Cognitive Services, OpenAI, etc.), the UI should be tailored to the specific service and use case. Here are recommended approaches:
1. Text-Based AI Services (Language, Translation, etc.)
Recommended UI Components:
MudBlazor (for Blazor apps):
<MudPaper Elevation="3" Class="pa-4 my-4">
<MudText Typo="Typo.h6">AI Analysis</MudText>
<MudText>@_aiResponse</MudText>
@if (!string.IsNullOrEmpty(_sentiment))
{
<MudChip Color="@(_sentiment == "Positive" ? Color.Success :
_sentiment == "Negative" ? Color.Error : Color.Warning)"
Class="mt-2">
@_sentiment Sentiment
</MudChip>
}
</MudPaper>
For key phrases extraction:
<MudChipSet>
@foreach (var phrase in _keyPhrases)
{
<MudChip>@phrase</MudChip>
}
</MudChipSet>
2. Computer Vision/Image Analysis
Recommended UI:
<div style="position: relative;">
<img src="@_imageUrl" style="max-width: 100%;" />
@foreach (var obj in _detectedObjects)
{
<div style="position: absolute;
left: @(obj.BoundingBox.Left * 100)%;
top: @(obj.BoundingBox.Top * 100)%;
width: @(obj.BoundingBox.Width * 100)%;
height: @(obj.BoundingBox.Height * 100)%;
border: 2px solid red;">
<span style="background: white; padding: 2px;">@obj.ObjectProperty</span>
</div>
}
</div>
3. Chat/Conversational AI (Azure OpenAI)
Recommended UI:
<MudContainer MaxWidth="MaxWidth.Medium">
<MudPaper Elevation="3" Class="pa-4" Style="height: 60vh; overflow-y: auto;">
@foreach (var message in _chatHistory)
{
<MudCard Class="my-2" Elevation="1">
<MudCardHeader>
<MudAvatar>@(message.Role == "user" ? "U" : "AI")</MudAvatar>
<MudText Typo="Typo.subtitle2">@message.Role</MudText>
</MudCardHeader>
<MudCardContent>
<MarkdownString Value="@message.Content" />
</MudCardContent>
</MudCard>
}
</MudPaper>
<MudTextField @bind-Value="_userMessage"
Label="Type your message"
Variant="Variant.Outlined"
FullWidth
Class="mt-4">
<Adornment>
<MudButton OnClick="SendMessage"
Icon="@Icons.Material.Filled.Send"
Disabled="@_isProcessing" />
</Adornment>
</MudTextField>
</MudContainer>
4. Form Recognizer/Data Extraction
Recommended UI:
<MudTable Items="@_extractedData" Hover="true">
<HeaderContent>
<MudTh>Field</MudTh>
<MudTh>Value</MudTh>
<MudTh>Confidence</MudTh>
</HeaderContent>
<RowTemplate>
<MudTd>@context.FieldName</MudTd>
<MudTd>@context.Value</MudTd>
<MudTd>
<MudProgressLinear Value="@(context.Confidence * 100)"
Color="@(context.Confidence > 0.9 ? Color.Success :
context.Confidence > 0.7 ? Color.Warning : Color.Error)"/>
</MudTd>
</RowTemplate>
</MudTable>
5. Custom Decision/Recommendation Services
Recommended UI:
<MudGrid>
@foreach (var recommendation in _recommendations)
{
<MudItem xs="12" sm="6" md="4">
<MudCard Elevation="5" Class="h-100">
<MudCardHeader>
<MudAvatar Color="Color.Primary">@recommendation.Score.ToString("P0")</MudAvatar>
<MudText Typo="Typo.h6">@recommendation.Title</MudText>
</MudCardHeader>
<MudCardContent>
@recommendation.Description
</MudCardContent>
<MudCardActions>
<MudButton Variant="Variant.Text" Color="Color.Primary">View Details</MudButton>
</MudCardActions>
</MudCard>
</MudItem>
}
</MudGrid>
Best Practices for Azure AI UI
Visual Feedback:
Show loading states during API calls
<MudProgressCircular Indeterminate="true" Color="Color.Primary"
Visible="@_isLoading" Class="my-4" />
Error Handling:
@if (!string.IsNullOrEmpty(_errorMessage))
{
<MudAlert Severity="Severity.Error" Variant="Variant.Filled">
@_errorMessage
</MudAlert>
}
Confidence Indicators:
Visualize confidence scores for uncertain predictions
<MudTooltip Text="@($"Confidence: {_confidence:P2}")">
<MudIcon Icon="@(_confidence > 0.9 ? Icons.Material.Filled.CheckCircle :
_confidence > 0.7 ? Icons.Material.Filled.Warning :
Icons.Material.Filled.Error)"
Color="@(_confidence > 0.9 ? Color.Success :
_confidence > 0.7 ? Color.Warning : Color.Error)" />
</MudTooltip>
Interactive Exploration:
Allow users to refine/correct AI outputs
<MudTextField @bind-Value="_correctedText"
Label="Correct the AI output"
Visible="@_showCorrectionField" />
Responsive Design:
Ensure UI works across devices
<MudGrid>
<MudItem xs="12" md="6">
<!-- Input controls -->
</MudItem>
<MudItem xs="12" md="6">
<!-- AI output -->
</MudItem>
</MudGrid>
For enterprise applications, consider adding:
- Export capabilities (PDF, CSV)
- Audit trails of AI interactions
- User feedback mechanisms (“Was this helpful?”)
- Explanation components for AI decisions

